Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice.

نویسندگان

  • Sulochana S Bhandarkar
  • Marisa Jaconi
  • Levi E Fried
  • Michael Y Bonner
  • Benjamin Lefkove
  • Baskaran Govindarajan
  • Betsy N Perry
  • Ravi Parhar
  • Jamie Mackelfresh
  • Allie Sohn
  • Michael Stouffs
  • Ulla Knaus
  • George Yancopoulos
  • Yvonne Reiss
  • Andrew V Benest
  • Hellmut G Augustin
  • Jack L Arbiser
چکیده

Hemangiomas are the most common type of tumor in infants. As they are endothelial cell-derived neoplasias, their growth can be regulated by the autocrine-acting Tie2 ligand angiopoietin 2 (Ang2). Using an experimental model of human hemangiomas, in which polyoma middle T-transformed brain endothelial (bEnd) cells are grafted subcutaneously into nude mice, we compared hemangioma growth originating from bEnd cells derived from wild-type, Ang2+/-, and Ang2-/- mice. Surprisingly, Ang2-deficient bEnd cells formed endothelial tumors that grew rapidly and were devoid of the typical cavernous architecture of slow-growing Ang2-expressing hemangiomas, while Ang2+/- cells were greatly impaired in their in vivo growth. Gene array analysis identified a strong downregulation of NADPH oxidase 4 (Nox4) in Ang2+/- cells. Correspondingly, lentiviral silencing of Nox4 in an Ang2-sufficient bEnd cell line decreased Ang2 mRNA levels and greatly impaired hemangioma growth in vivo. Using a structure-based approach, we identified fulvenes as what we believe to be a novel class of Nox inhibitors. We therefore produced and began the initial characterization of fulvenes as potential Nox inhibitors, finding that fulvene-5 efficiently inhibited Nox activity in vitro and potently inhibited hemangioma growth in vivo. In conclusion, the present study establishes Nox4 as a critical regulator of hemangioma growth and identifies fulvenes as a potential class of candidate inhibitor to therapeutically interfere with Nox function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

P77: NADPH Oxidase Type 4 Inhibits Immune Cell Trafficking into The Central Nervous System During Neuroinflammation

Transendothelial trafficking of immune cells into the central nervous system (CNS) and disruption of the blood brain barrier (BBB) are pathophysiological hallmarks of neuroinflammatory disorders like multiple sclerosis (MS). Accumulating evidence suggest that oxidative stress plays a major role in the pathogenesis of MS, whereas a specific influence of oxidative stress on BBB dysfunction in MS ...

متن کامل

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

Fulvene-5 inhibition of Nadph oxidases attenuates activation of epithelial sodium channels in A6 distal nephron cells.

Nadph oxidase 4 is an important cellular source of reactive oxygen species (ROS) generation in the kidney. Novel antioxidant drugs, such as Nox4 inhibitor compounds, are being developed. There is, however, very little experimental evidence for the biological role and regulation of Nadph oxidase isoforms in the kidney. Herein, we show that Fulvene-5 is an effective inhibitor of Nox-generated ROS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 119 8  شماره 

صفحات  -

تاریخ انتشار 2009